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Abstract
Background  Ethylnitrosourea (ENU) is a potent mutagen that induces gliomas in experimental models. 
Understanding the molecular mechanisms underlying ENU-induced gliomagenesis can provide insights into glioma 
pathogenesis and potential therapeutic targets.

Methods  We analyzed gene expression data from GSE16011 and GSE4290 datasets to identify differentially 
expressed genes (DEGs) associated with gliomagenesis. Comparative Toxicogenomics Database (CTD) was used to 
identify potential ENU targets. Protein-protein interaction (PPI) network, enrichment analysis, and Cox regression 
analysis were employed to elucidate key genes and pathways. A risk model was constructed using the TCGA dataset 
by LASSO analysis, and nomogram and immuno-infiltration analyses were performed.

Results  We identified 71 common genes potentially in ENU-induced gliomas. Key hub genes, including TP53, MCL1, 
CCND1, and PTEN, were highlighted in the PPI network. Enrichment analysis revealed significant GO terms and KEGG 
pathways, such as “Neuroactive ligand-receptor interaction” and “Glioma.” A risk model based on 11 prognostic genes 
was constructed, effectively stratifying patients into low and high-risk groups, with significant differences in overall 
survival. The model demonstrated high predictive accuracy. The nomogram constructed from ENU-related risk scores 
showed good calibration and clinical utility. Immuno-infiltration analysis indicated higher immune cell infiltration in 
high-risk patients. Molecular docking suggested strong binding affinities of ENU with MGMT and CA12.

Conclusion  Our integrative analysis identified key genes and pathways implicated in ENU-induced gliomagenesis. 
The ENU-related risk model and nomogram provide significant prognostic value, offering potential tools for clinical 
assessment and targeted therapies in glioma patients.
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Introduction
Gliomas are among the most aggressive and deadly 
types of brain tumors, posing significant challenges to 
patients and healthcare systems worldwide [1, 2]. Despite 
extensive research, the precise molecular mechanisms 
underlying gliomagenesis remain elusive, hindering 
the development of effective therapeutic strategies [3, 
4]. Ethylnitrosourea (ENU) is a potent alkylating agent 
widely used in experimental models to induce gliomas. 
ENU has been extensively studied for its ability to cause 
DNA damage and mutations, leading to the formation of 
gliomas that closely mimic human glioma development 
[5]. Understanding how ENU induces gliomagenesis can 
offer crucial insights into the pathogenesis of gliomas and 
potentially unveil novel therapeutic targets.

Bioinformatics techniques have emerged as power-
ful tools in disease prevention and diagnosis by enabling 
comprehensive analysis of large-scale genomic datas-
ets. These methods facilitate the identification of dif-
ferentially expressed genes (DEGs), key pathways, and 
potential biomarkers critical for understanding disease 
mechanisms and developing targeted therapies [6–8]. 
Previous studies have demonstrated that ENU expo-
sure leads to the formation of gliomas in animal mod-
els, closely mimicking many aspects of human glioma 
development [9, 10]. Research has primarily focused on 
identifying genetic mutations and alterations in signaling 
pathways that contribute to tumorigenesis. However, the 
comprehensive identification of differentially expressed 
genes (DEGs) and their functional roles in ENU-induced 
gliomas has been limited. Moreover, research leverag-
ing extensive transcriptomic datasets and bioinformatics 
methodologies to develop prognostic prediction algo-
rithms for gliomas demonstrates a broad spectrum of 
potential applications [11]. Bioinformatics techniques 
such as protein-protein interaction (PPI) network analy-
sis, enrichment analysis, molecular docking, and Cox 
regression analysis have shown promise in elucidating 
key genes and pathways involved in disease progression 
[12–14]. By leveraging these methods, researchers can 
gain deeper insights into the molecular mechanisms of 
ENU-induced gliomagenesis and develop more accu-
rate prognostic models. This integrative approach not 
only enhances our understanding of the underlying biol-
ogy but also provides valuable tools for clinical applica-
tions, such as risk stratification and targeted therapy 
development.

The motivation behind this study stems from the need 
to fill the gaps in our understanding of the molecular 
mechanisms by which ENU induces gliomas. By leverag-
ing high-throughput gene expression data and advanced 
bioinformatics analyses, this study aims to identify key 
genes and pathways involved in ENU-induced glioma-
genesis. Additionally, constructing a robust prognostic 

model based on these findings could significantly 
enhance the clinical management of glioma patients by 
providing more accurate risk stratification and identify-
ing potential therapeutic targets.

Our study utilized a multi-step approach. Gene expres-
sion data from the GSE16011 and GSE4290 datasets were 
analyzed to identify DEGs. Comparative Toxicogenomics 
Database (CTD) and other public datasets were used to 
pinpoint potential ENU targets. A PPI network was con-
structed to highlight key hub genes, followed by enrich-
ment analysis to identify significant biological processes 
and pathways. A prognostic risk model was developed 
using LASSO analysis on the TCGA dataset, and its pre-
dictive accuracy was assessed. A nomogram based on 
ENU-related risk scores was constructed and validated. 
Immuno-infiltration analysis was performed to explore 
the immune landscape in glioma patients, and molecular 
docking studies evaluated the interactions between ENU 
and key proteins. Figure 1 presents the flowchart of our 
study. By addressing the current gaps in glioma research, 
this study contributes to the development of more effec-
tive diagnostic and therapeutic strategies, ultimately 
improving patient outcomes.

Methods
Data collection and preprocessing
To investigate the molecular mechanisms underlying 
glioma, we analyzed two publicly available gene expres-
sion datasets: GSE16011 and GSE4290. The GSE16011 
dataset comprises RNA-seq data from 276 glioma sam-
ples alongside 8 samples of normal brain tissue, whereas 
the GSE4290 dataset contains 157 glioma samples and 23 
normal brain tissue samples. Both datasets’ raw data were 
obtained from the Gene Expression Omnibus (GEO) 
database (​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​n​l​​m​.​n​i​​h​.​​g​o​v​/​g​e​o​/). Following 
this, the raw matrix files were processed and standard-
ized using the Affy software package. Differential gene 
expression analysis was carried out on each dataset using 
the limma R package, with a significance threshold of an 
adjusted p-value < 0.05. The Benjamini-Hochberg method 
was employed for multiple testing corrections to control 
the false discovery rate. Genes meeting these criteria 
were considered differentially expressed genes (DEGs).

Identification of potential targets linked to ENU-induced 
gliomas
To identify potential molecular targets involved in ENU-
induced gliomagenesis, we utilized the Comparative 
Toxicogenomics Database (CTD) (https://ctdbase.org/) 
and cross-referenced the identified DEGs from both 
GSE16011 and GSE4290 datasets with ENU-related tar-
gets available in CTD. The overlap of DEGs from both 
datasets with ENU-specific targets was visualized using 

https://www.ncbi.nlm.nih.gov/geo/
https://ctdbase.org/
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a Venn diagram to highlight genes common between the 
datasets and ENU exposure.

Protein-protein interaction (PPI) network construction
Following the identification of common genes linked 
to ENU-induced glioma, we constructed a PPI network 
using the STRING database (https://cn.string-db.org/). 
The PPI network was visualized with Cytoscape software 
to highlight key hub genes based on degree centrality. 
These hub genes were then analyzed for their biologi-
cal significance, with a focus on their regulatory roles in 
gliomagenesis.

Functional and pathway enrichment analysis
To further explore the biological processes and pathways 
involved in ENU-induced glioma, Gene Ontology (GO) 
enrichment analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis were performed 
on the 71 common genes. GO enrichment analysis cat-
egorized the genes into biological processes (BP), cel-
lular components (CC), and molecular functions (MF), 
while KEGG pathway analysis identified relevant bio-
logical pathways. For the enrichment analysis, the same 
Benjamini-Hochberg method was applied to adjust 
p-values, ensuring the robustness of the results. Enrich-
ment analysis was conducted using the clusterProfiler R 
package, with a significance threshold set at an adjusted 
p-value < 0.05.

Construction of ENU-related risk model
Using data from The Cancer Genome Atlas (TCGA), we 
performed univariate Cox regression analysis on the 71 
ENU-related genes to identify prognostic genes associ-
ated with overall survival in glioma patients. To address 
multiple testing corrections, we applied the Benjamini-
Hochberg method to control the false discovery rate. A 
LASSO regression model was then applied to these genes 
to construct a risk model, with the optimal tuning param-
eter (lambda) determined using 10-fold cross-validation 
to prevent overfitting. The risk model was used to stratify 
patients into high and low-risk groups based on their risk 
scores, which were calculated as the linear combination 
of the expression levels of the prognostic genes weighted 
by their corresponding coefficients from the LASSO 
model. The performance of the risk model was assessed 
using Kaplan-Meier survival analysis and the area under 
the curve (AUC) for 1-year, 3-year, and 6-year survival 
predictions. Furthermore, we assessed the prognostic 
and diagnostic efficacy of this risk-scoring model in gli-
oma patients by utilizing the CGGA-325 dataset, which 
comprises 325 glioma patients, as well as the GSE83300 
dataset, which includes 50 glioma patients. Statistical sig-
nificance was defined as a p-value < 0.05 for all analyses.

Nomogram construction and evaluation
To provide a visual tool for predicting patient outcomes, 
a nomogram was constructed based on the ENU-related 
risk scores. The nomogram was designed to predict 

Fig. 1  Flowchart of the study
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1-year, 3-year, and 6-year survival probabilities. Calibra-
tion plots were generated to evaluate the accuracy of the 
nomogram, and decision curve analysis (DCA) was con-
ducted to assess its clinical utility.

Analysis of immune cell infiltration
The GSVA tool was utilized to conduct ssGSEA to evalu-
ate the distribution of 24 distinct immune cell subsets 
across groups characterized by low and high risk scores. 
The ESTIMATE algorithm was employed to assess the 
ESTIMATE Score, Immune Score, and Stromal Score. 
Spearman’s rank correlation analysis was performed 
using the ggplot2 package. All bioinformatics analyses 
were conducted using the Xiantao Academic platform 
(https://www.xiantaozi.com/), which offers a ​c​o​m​p​r​e​h​e​n​
s​i​v​e suite of tools for data processing and analysis [15].

Molecular docking analysis
Molecular docking analysis was performed to investi-
gate the binding affinities between ENU and the identi-
fied key risk genes. The chemical structure of ENU was 
sourced from the PubChem database (​h​t​t​p​​s​:​/​​/​p​u​b​​c​h​​e​m​
.​​n​c​b​​i​.​n​l​​m​.​​n​i​h​.​g​o​v​/), while the target protein structures 
were retrieved from the Protein Data Bank (PDB) ​(​​​h​t​t​p​
s​:​/​/​w​w​w​.​r​c​s​b​.​o​r​g​​​​​)​. Subsequently, molecular docking was 
conducted utilizing AutoDock Vina. The binding interac-
tions were analyzed based on the calculated Vina scores 
and the specific residues involved in the binding process.

Molecular dynamics simulation (MD)
MD was conducted utilizing the Gromacs 2022 soft-
ware, employing the GAFF force field tailored for small 
molecules, alongside the AMBER14SB force field and 
the TIP3P water model for protein representation. The 
simulation system for the complex was established by 
integrating files corresponding to both proteins and small 
molecule ligands. The simulations were carried out under 
conditions of constant temperature and pressure, incor-
porating periodic boundary conditions. Throughout the 
MD simulations, all hydrogen bonds were constrained 
utilizing the LINCS algorithm, with a time integration 
step set at 2 femtoseconds. Electrostatic interactions 
were determined via the Particle-Mesh Ewald (PME) 
method, with a cutoff distance established at 1.2 nano-
meters. The cutoff for non-bonded interactions was des-
ignated at 10 Å and was refreshed every ten steps. The 
V-rescale method was employed for temperature cou-
pling, maintaining the simulated temperature at 298  K, 
while the Berendsen method was applied to regulate the 
pressure at 1  bar. At a temperature of 298  K, 100 pico-
seconds of NVT and NPT equilibrium simulations were 
performed, followed by 100 nanoseconds of MD simula-
tions on the complex system, with conformational data 
recorded every 10 picoseconds. Upon completion of the 

simulation, the resultant trajectories were analyzed uti-
lizing VMD and PyMOL software.

Results
Characterization of molecular targets linked to ENU-
induced gliomas
In the GSE16011 dataset, 4306 genes were found to 
be significantly downregulated, while 3684 genes were 
significantly upregulated (Fig.  2A). Similarly, in the 
GSE4290 dataset, 4078 genes were significantly down-
regulated, and 5921 genes were significantly upregu-
lated (Fig.  2B). To identify potential targets of ENU, we 
utilized the Comparative Toxicogenomics Database. The 
overlap between DEGs from GSE16011 and GSE4290 
datasets with ENU targets was visualized using a Venn 
diagram, revealing 71 common genes potentially impli-
cated in ENU-induced glioma (Fig. 2C). The significance 
of constructing the PPI network lies in its ability to iden-
tify key interactions and regulatory relationships among 
these genes. The 71 ENU-induced glioma targets were 
further subjected to PPI analysis, as shown in Fig.  2D. 
The PPI network highlights key hub genes, including 
TP53, MCL1, CCND1, and PTEN, which exhibit central 
roles in the network and suggest critical regulatory func-
tions in the context of ENU-induced gliomagenesis. This 
PPI network provides insights into potential molecular 
mechanisms and interactions that could be targeted for 
therapeutic intervention. In summary, our integrative 
analysis of DEGs from glioma datasets and ENU targets 
has identified 71 genes that may play a significant role in 
ENU-induced glioma pathogenesis.

Enrichment analysis of ENU-related toxicity targets
Figure 3 presents the enrichment analysis results of the 
71 identified ENU-related toxicity targets, revealing 
significant biological processes, cellular components, 
molecular functions, and pathways likely implicated in 
ENU-induced glioma. The significance of the results pre-
sented in the enrichment analysis lies in their ability to 
elucidate the biological context and functional implica-
tions of the identified targets. Figure  3A shows the GO 
enrichment analysis categorized into Biological Process 
(BP), Cellular Component (CC), and Molecular Function 
(MF). In the BP category, the top enriched terms include 
“response to xenobiotic stimulus,” “one-carbon meta-
bolic process,” and “regulation of cytosolic calcium ion 
concentration.” The CC category is significantly enriched 
for terms such as “chromosomal region,” “neuronal cell 
body,” and “nuclear chromosome.” In the MF category, 
key enriched terms include “carbonate dehydratase activ-
ity,” “p53 binding,” and “lyase activity.” Fig. 3B highlights 
the KEGG pathway enrichment analysis for the 71 ENU 
targets. The analysis reveals significant pathways such as 
“Neuroactive ligand-receptor interaction,” “MicroRNAs 

https://www.xiantaozi.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org
https://www.rcsb.org
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in cancer,” and “Sphingolipid signaling pathway.” Other 
notable pathways include “Nitrogen metabolism,” “Neu-
rotrophin signaling pathway,” “Central carbon metabo-
lism in cancer,” and specific cancer-related pathways 
such as “Glioma,” “Melanoma,” and “Endometrial cancer.” 
These enrichment analyses indicate that the ENU-related 
toxicity targets play crucial roles in various biological 

processes and pathways, thereby providing insights into 
the potential mechanisms underlying ENU-induced gli-
oma development.

Identification of ENU-related risk model in glioma patients
In the TCGA dataset, COX regression analysis was per-
formed on the 71 ENU-related toxicity targets to identify 

Fig. 2  Identification and analysis of DEGs and ENU-induced glioma targets. DEGs were identified from glioma datasets GSE16011 (A) and GSE4290 (B). 
The x-axis denotes log2-transformed fold changes and the y-axis denotes the negative log10-transformed adjusted p-values (Padj). Red dots represent 
upregulated genes, blue dots indicate downregulated genes and grey dots denote non-significant genes. (C) Venn diagram illustrating the overlap be-
tween glioma DEGs and ENU targets, identifying 71 common genes implicated in ENU-induced glioma. (D) PPI network of the 71 ENU-induced glioma 
targets. Red nodes indicate hub genes and yellow nodes represent other interacting genes
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prognosis-related genes. The regression analysis success-
fully identified 16 prognostic genes (Table  1). Based on 
the 16 identified prognostic genes, a risk model related 
to ENU exposure was constructed by LASSO regression 
analysis (Fig.  4A). Glioma patients were classified into 
low and high-risk groups according to their risk scores. 
The heatmap in Fig.  4B illustrates the expression pro-
files of these 11 genes in both risk groups, with distinct 
expression patterns observed between low and high-risk 
patients. Survival analysis demonstrated that patients in 
the high-risk group had significantly poorer overall sur-
vival compared to those in the low-risk group (Fig.  4C, 
p < 0.001). This indicates that the risk model can effec-
tively stratify patients based on their prognosis. Further-
more, the area under the curve (AUC) values were 0.872 
for 1-year, 0.907 for 3-year, and 0.848 for 6-year survival 
predictions (Fig.  4D). Furthermore, we validated the 
prognostic and diagnostic performance of this risk model 
in glioma patients using the CGGA-325 (Figure S1) and 
GSE83300 (Figure S2) datasets. These results suggest that 
the risk model has high sensitivity and specificity in pre-
dicting the survival of glioma patients exposed to ENU. 
In summary, the constructed ENU-related risk model, 
based on 11 prognostic genes, provides significant pre-
dictive value for the survival of glioma patients.

Construction and evaluation of the nomogram
A nomogram model was constructed for glioma patients 
based on the ENU-related risk scores (Fig.  5A). The 
nomogram predicts 1-year, 3-year, and 6-year survival 
probabilities, offering a visual and quantitative tool for 
individualized patient prognosis. Calibration plots were 
used to evaluate the predictive performance of the con-
structed nomogram. As shown in Fig.  5B, the observed 
survival probabilities align closely with the nomogram-
predicted survival probabilities for 1-year, 3-year, and 
6-year outcomes, indicating good calibration and predic-
tive accuracy. DCA was employed to assess the clinical 
utility of the nomogram by quantifying the net benefit 
at different threshold probabilities. Figure 5C and D, and 
5E illustrate the DCA plots for 1-year, 3-year, and 6-year 
survival predictions, respectively. The results demon-
strate that using the risk score-derived nomogram pro-
vides a higher net benefit than either treating all patients 
or treating no patients across a range of threshold prob-
abilities. In summary, the nomogram constructed from 
ENU-related risk scores shows excellent predictive per-
formance and has substantial clinical utility in predicting 
the survival outcomes of glioma patients.

Fig. 3  Enrichment analysis of 71 ENU-related toxicity targets. (A) Gene Ontology (GO) enrichment analysis is categorized into Biological Process (BP), 
Cellular Component (CC), and Molecular Function (MF). The x-axis represents -Log10(P.adj), indicating the significance of enrichment, with bars colored 
according to ontology categories (BP in blue, CC in red, MF in green). (B) KEGG pathway enrichment analysis, where the x-axis represents the GeneRatio 
and the y-axis lists the enriched pathways. Dot size indicates the gene count in each pathway, while color intensity reflects the adjusted p-value (P.adj), 
with blue representing lower and red representing higher p-values
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Table 1  The results of COX regression analysis based on TCGA-glioma dataset
Characteristics Total(N) HR(95% CI) Univariate 

analysis
P value Univariate 
analysis

HR(95% CI) Multivariate 
analysis

P value 
Multivari-
ate analysis

TOP2A 698
Low 349 Reference Reference
High 349 4.080 (3.076–5.411) < 0.001 1.970 (1.041–3.730) 0.037
SMO 698
Low 348 Reference Reference
High 350 3.412 (2.614–4.454) < 0.001 1.582 (1.113–2.247) 0.010
CASP6 698
Low 348 Reference Reference
High 350 5.963 (4.459–7.975) < 0.001 1.713 (1.043–2.813) 0.034
PSMB9 698
Low 348 Reference Reference
High 350 4.487 (3.416–5.895) < 0.001 1.678 (1.161–2.426) 0.006
GRIN1 698
Low 349 Reference Reference
High 349 0.362 (0.280–0.468) < 0.001 0.619 (0.398–0.963) 0.034
MCL1 698
Low 348 Reference Reference
High 350 1.871 (1.465–2.388) < 0.001 1.467 (1.070–2.012) 0.017
BCHE 698
Low 349 Reference Reference
High 349 0.588 (0.462–0.750) < 0.001 0.716 (0.532–0.964) 0.028
CA12 698
Low 348 Reference Reference
High 350 2.586 (2.013–3.323) < 0.001 1.821 (1.350–2.456) < 0.001
NTRK3 698
Low 349 Reference Reference
High 349 0.383 (0.295–0.496) < 0.001 0.651 (0.474–0.895) 0.008
AURKB 698
Low 349 Reference Reference
High 349 4.446 (3.355–5.891) < 0.001 1.766 (1.022–3.053) 0.042
CA3 698
Low 347 Reference Reference
High 351 5.008 (3.791–6.615) < 0.001 1.521 (1.044–2.214) 0.029
PTGS1 698
Low 348 Reference Reference
High 350 2.998 (2.309–3.891) < 0.001 1.704 (1.085–2.678) 0.021
ADORA1 698
Low 348 Reference Reference
High 350 2.127 (1.665–2.717) < 0.001 1.387 (1.021–1.884) 0.037
MGMT 698
Low 348 Reference Reference
High 350 1.775 (1.392–2.264) < 0.001 1.522 (1.158–2.000) 0.003
NFE2L2 698
Low 349 Reference Reference
High 349 2.247 (1.748–2.890) < 0.001 2.153 (1.532–3.027) < 0.001
AVPR1B 698
Low 349 Reference Reference
High 349 1.273 (1.002–1.617) 0.048 1.471 (1.133–1.909) 0.004
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Fig. 4  Identification of ENU-related risk model in glioma. (A) LASSO regression analysis of 71 ENU-related toxicity targets identified 11 prognostic genes 
in the TCGA dataset. The x-axis represents Log(λ) and the y-axis shows partial likelihood deviance with error bars indicating standard errors. The dashed 
lines correspond to two selected λ values. (B) Construction of the ENU-related risk model for glioma patients using the 11 identified prognostic genes. 
The risk score distribution, patient survival status, and a heatmap of relevant gene expressions, with the x-axis representing patients sorted by risk score 
into low (blue) and high (red) risk groups, while the y-axis shows survival time. (C) Kaplan-Meier survival curves showing the overall survival of glioma 
patients in the high-risk and low-risk groups, with the x-axis representing time in days and the y-axis showing survival probability; the hazard ratio (HR) 
and p-value are indicated. (D) ROC curve analysis of the risk model demonstrates the predictive performance for 1-year, 3-year, and 6-year survival, with 
the x-axis denoting false-positive rate (1-specificity) and the y-axis denoting true-positive rate (sensitivity). The area under the curve (AUC) values for each 
time point are provided, demonstrating the predictive performance of the risk score model
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Comparative analysis of risk scores among clinical 
subgroups
As shown in Fig. 6A, risk scores were significantly higher 
in tumor tissues compared to normal tissues (p < 0.05), 
suggesting a strong association between elevated risk 
scores and glioma presence. Among different histologi-
cal types, glioblastomas exhibited the highest risk scores 
compared to astrocytomas, oligodendrogliomas, and 
oligoastrocytomas (p < 0.01), indicating a possible cor-
relation between higher risk scores and glioblastoma 
aggressiveness (Fig. 6B). When stratified by WHO grade, 
risk scores showed a stepwise increase from Grade 2 
to Grade 3, and from Grade 3 to Grade 4 (p < 0.001 and 
p < 0.01 respectively), reflecting a positive association 
between risk scores and tumor grade (Fig. 6C). Analysis 
of IDH mutation status revealed significantly higher risk 
scores in tumors with wild-type IDH compared to those 
with mutated IDH (p < 0.001), consistent with the known 
poorer prognosis of IDH wild-type gliomas (Fig. 6D). The 

age-based comparison showed significantly higher risk 
scores in patients older than 60 years compared to those 
60 years or younger (p < 0.001), suggesting that older 
age may be associated with higher risk scores (Fig.  6E). 
Finally, patients who were dead at the last follow-up had 
significantly higher risk scores compared to those who 
were alive (p < 0.001), highlighting the prognostic value of 
the risk scores for overall survival (Fig.  6F). These find-
ings underscore the clinical relevance of ENU-related 
risk scores and their potential utility in stratifying glioma 
patients based on key clinical and pathological features.

Immuno-infiltration analysis based on ENU-related risk 
scores
As shown in Fig.  7A, we observed that the high-risk 
group had significantly higher StromalScore, Immune-
Score, and ESTIMATEScore compared to the low-risk 
group (p < 0.001 for all comparisons). This indicates a 
higher level of stromal and immune cell infiltration in the 

Fig. 5  Construction and evaluation of the nomogram for predicting survival in glioma. (A) Nomogram model based on ENU-related risk scores for 
predicting 1-year, 3-year, and 6-year survival probabilities in glioma patients, where the total points assigned for each risk score sum up to predict the 
survival probability. (B) Calibration plots show the agreement between nomogram-predicted survival probabilities and observed outcomes for 1-year, 
3-year, and 6-year survival, where the x-axis represents the nomogram-predicted probabilities and the y-axis shows the observed fraction survival prob-
abilities. The diagonal line represents perfect prediction, and the points with error bars represent the model performance. DCA assesses the net benefit 
of the nomogram model at different threshold probabilities for 1-year (C), 3-year (D), and 6-year (E) survival predictions. The x-axes indicate threshold 
probabilities, and the y-axes show net benefits
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high-risk group. The ssGSEA analysis further revealed 
distinct differences in the infiltration levels of various 
immune cell types between the high-risk and low-risk 
groups (Fig.  7B). Significant increases in scores were 
noted for activated dendritic cells (aDC), B cells, cyto-
toxic cells, dendritic cells (DC), eosinophils, immature 
dendritic cells (iDC), macrophages, neutrophils, NK 
CD56 dim cells, T helper cells, Tcm, Th17 cells, and Th2 
cells in the high-risk group (p < 0.05 for all comparisons). 
Conversely, NK CD56 bright cells and plasmacytoid den-
dritic cells (pDC) showed lower infiltration in the high-
risk group (p < 0.001). The immune infiltration analysis 
suggests that the high-risk group is characterized by an 
enriched immune microenvironment, which may influ-
ence tumor behavior and patient prognosis. The corre-
lation heatmap illustrating the association of risk scores 
with the various immune cell types. A strong positive 
correlation was observed between the risk score and 
the majority of immune cells (Fig.  7C), reinforcing the 
observation of enhanced immune infiltration in high-risk 
patients. These results underscore the differences in the 

immune microenvironment between high-risk and low-
risk glioma patients, with high-risk patients exhibiting 
significantly elevated levels of immune cell infiltration.

Expression analysis of ENU-related risk model genes
The expression levels of the 11 ENU-related risk model 
genes were analyzed in the TCGA dataset, comparing 
normal tissues and glioma tumors (Fig.  8). Expression 
levels of AVPR1B and MGMT were significantly reduced 
in tumor tissues compared to normal tissues, while levels 
of NFE2L2, ADORA1, AURKB, NTRK3, CA12, BCHE, 
CASP6, and SMO were markedly elevated in tumor tis-
sues. The differential expression of these genes between 
normal and tumor tissues highlights their potential role 
in glioma pathogenesis and their association with ENU 
exposure. Furthermore, the expression levels of these 
genes were validated through independent datasets 
GSE16011 (Figure S3) and GSE4290 (Figure S4).

Fig. 6  Comparison of ENU-related risk scores across clinical subgroups. (A) Comparison of risk scores between normal and tumor tissues. (B) Stratification 
of risk scores among different histological types. (C) Risk scores by WHO grade, showing an increasing trend from Grade 2 to Grade 3 and from Grade 3 to 
Grade 4. (D) Comparison of risk scores between IDH wild-type (WT) and mutant (Mut) status. (E) Age-based comparison of risk scores. (F) Comparison of 
risk scores between patients who are alive versus dead at last follow-up. * for p < 0.05, ** for p < 0.01, and *** for p < 0.001, with all comparisons conducted 
using the Wilcoxon rank sum test. The y-axis for all panels represents the risk score
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Molecular docking analysis
The chemical structure of ENU (Fig. 9A). The Vina score, 
which estimates the binding affinity, is presented for 
each gene (Fig.  9B). The genes NTRK3, AVPR1B, and 
ADORA1 showed relatively lower binding affinities with 
Vina scores of -4.0, -4.1, and − 4.1, respectively. CASP6 
and NFE2L2 exhibited moderate binding affinities with 
scores of -4.6 and − 4.7, respectively. CA12 had affini-
ties around − 5.0, while the highest binding affinity was 
observed with MGMT, scoring − 5.1. Detailed docking 
interaction of ENU with MGMT is illustrated (Fig. 9C). 
The binding pocket shows critical interactions, includ-
ing hydrogen bonding and hydrophobic interactions, 
contributing to the strong binding affinity. Key residues 
such as L142, K107, W65, and V106 are involved in the 
binding process. The binding of ENU to MGMT poten-
tially disrupts its catalytic activity by interfering with the 
active site’s structural conformation. MGMT is known 
for its role in DNA repair. Therefore, ENU binding could 
impair this function, leading to increased DNA alkylation 
and genomic instability, which are key factors in glioma 
development [16]. The interaction of ENU with CA12 
is depicted (Fig.  9D). ENU forms several key interac-
tions within the binding pocket, with residues H96, H94, 
W209, H119, E106, and T199 playing significant roles. 

The docking poses highlight extensive hydrogen bonding 
and hydrophobic interactions, indicating a robust bind-
ing affinity of ENU to CA12. CA12 is a carbonic anhy-
drase involved in pH regulation and tumor metabolism. 
ENU binding to CA12 might alter its enzymatic activity, 
thereby disrupting the acidic microenvironment of gli-
oma cells, which is crucial for their proliferation and sur-
vival [17, 18]. This interaction could hinder tumor growth 
by affecting cellular metabolism and pH homeostasis. 
The results of the molecular docking analysis suggest that 
ENU exhibits varying degrees of binding affinities with 
different risk model genes, potentially implicating these 
genes in ENU-induced gliomagenesis. The high bind-
ing affinities of ENU with MGMT and CA12 underscore 
their potential roles in mediating ENU’s toxic effects in 
glioma development.

Molecular dynamics simulation of the MGMT-ENU complex
In the molecular dynamics simulations of the MGMT-
ENU complex, several parameters were analyzed to 
assess the stability and behavior of the complex over a 
100 ns simulation period. The Root-Mean-Square Devia-
tion (RMSD) analysis (Fig.  10A) of the protein, ligand, 
and complex reveals distinct stability profiles. The over-
all stability of the complex is maintained, as evidenced 

Fig. 7  Evaluation of immune infiltration levels in high and low-risk glioma patients. (A) Box plots comparing StromalScore, ImmuneScore, and ESTIMA-
TEScore between high-risk and low-risk groups. (B) Box plots comparing ssGSEA scores of various immune cell types between high-risk and low-risk 
groups. (C) Heatmap showing the correlation between risk scores and ssGSEA scores for different immune cell types. * for p < 0.05, ** for p < 0.01, and *** 
for p < 0.001, with all comparisons conducted using the Wilcoxon rank sum test
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by an RMSD fluctuating around 0.2  nm throughout the 
simulation. This indicates that while the complex forma-
tion does induce some conformational changes, these 
remain within a stable range. The Radius of Gyration (Rg) 
of the complex (Fig. 10B) fluctuates minimally within the 
1.78–1.80  nm range, indicating consistent compactness 
and no significant unfolding of the protein structure dur-
ing the simulation period. This stable Rg suggests that 
the ENU binding does not substantially alter the global 
folding of MGMT. The Root-Mean-Square Fluctuation 
(RMSF) analysis (Fig.  10C) provides insights into resi-
due-specific flexibility. Most residues exhibit fluctuations 
below 0.1 nm, indicating limited flexibility. However, cer-
tain residues display increased fluctuations up to 0.3 nm, 
possibly corresponding to the active site or interaction 

regions that accommodate binding-induced conforma-
tional changes. The distance analysis between docking 
site-ligand and protein-ligand (Fig. 10D) indicates stable 
interactions, with distances generally averaging around 
0.5–0.6 nm. Similarly, MD analysis showed that the com-
plex of small-molecule ENU with CA12 protein remained 
stable during 0–65 ns (Figure S5). The complex of small 
molecule ENU with AURKB protein was gradually stabi-
lised after 80 ns (Figure S6). However, further experimen-
tal validation should be pursued to corroborate these in 
silico findings.

Fig. 8  Expression analysis of ENU-related risk model genes. Comparison of the expression levels of AVPR1B (A), NFE2L2 (B), MGMT (C), ADORA1 (D), CA3 
(E), AURKB (F), NTRK3 (G), CA12 (H), BCHE (I), CASP6 (J), and SMO (K) genes between normal tissues and glioma tumors in the TCGA dataset. ** for p < 0.01, 
and *** for p < 0.001, with all comparisons conducted using the Wilcoxon rank sum test
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Discussion
ENU is a well-established mutagen known for its potent 
carcinogenic effects, particularly in the induction of 
gliomas, a type of malignant brain tumor characterized 
by aggressive growth and poor prognosis [19]. ENU 
induces mutations through the alkylation of DNA, lead-
ing to genetic alterations that drive gliomagenesis [9]. 
Understanding the molecular mechanisms by which 
ENU induces gliomas is critical for improving the diag-
nosis and treatment of glioma patients. In this study, we 
performed an integrative analysis of gene expression data 
from ENU-induced glioma models and identified key 
molecular targets and pathways that may contribute to 
glioma pathogenesis. Our findings highlight the potential 

of these targets as prognostic markers and therapeutic 
candidates for glioma.

One of the main findings of our study is the identi-
fication of 71 common genes potentially implicated in 
ENU-induced gliomagenesis. These genes were identified 
through an overlap analysis of DEGs from the GSE16011 
and GSE4290 datasets with ENU targets available in the 
CTD. Among the 71 genes, key hub genes such as TP53, 
MCL1, CCND1, and PTEN were identified through PPI 
network analysis. These genes are well-known tumor 
suppressors and oncogenes involved in cell cycle regula-
tion, apoptosis, and DNA repair mechanisms, and their 
dysregulation has been previously implicated in glioma 
development [20–23]. However, the specific roles of these 
hub genes in the context of ENU-induced gliomagenesis 

Fig. 9  Molecular docking interactions of ENU with risk model genes. (A) The chemical structure of ENU. (B) The bar graph shows the Vina docking scores 
for ENU with various proteins, with lower scores indicating stronger binding affinities. (C) Detailed molecular docking interaction between ENU and 
MGMT. (D) Molecular docking interaction between ENU and CA12. Hydrogen bonds and interaction sites are marked, with residues involved in binding 
interactions labeled (e.g., W65, H119)
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warrant further investigation. For instance, elucidating 
the functional implications of TP53 and MGMT in about 
lactate metabolism, immune regulation, and tumor 
microenvironment remodeling could enhance our under-
standing of their contributions to glioma progression. 
The presence of these genes in the context of ENU expo-
sure further supports their role in ENU-induced glioma-
genesis, making them potential candidates for targeted 
therapeutic interventions.

In comparison to previous studies, our analysis pro-
vides novel insights into the molecular pathways involved 
in ENU-induced glioma. For example, GO and KEGG 
enrichment analyses revealed significant biological pro-
cesses and pathways, such as “Neuroactive ligand-recep-
tor interaction,” “Glioma,” and “MicroRNAs in cancer.” 
These findings are consistent with prior reports linking 
these pathways to glioma development [24–26]. However, 
our study extends this knowledge by identifying specific 
ENU-induced targets within these pathways, highlight-
ing the role of ENU in altering cellular communication 
and tumor-promoting microenvironments. Further path-
way enrichment analyses could provide deeper insights 
into how these pathways interact with the identified hub 
genes, particularly in the context of immune modulation 
and metabolic alterations in glioma. The identification 
of these pathways suggests that ENU not only induces 

mutations but also triggers downstream signaling events 
that promote glioma progression, which may be explored 
for future therapeutic strategies.

A significant contribution of our work is the develop-
ment of an ENU-related risk model based on 11 prog-
nostic genes. Using LASSO regression analysis, we 
constructed a model that effectively stratified glioma 
patients into low and high-risk groups, with distinct 
survival outcomes. This model demonstrated high sen-
sitivity and specificity in predicting patient survival, as 
reflected in the AUC values for 1-year, 3-year, and 6-year 
survival predictions. Notably, the prognostic genes 
included in our model, such as MGMT, NFE2L2, CASP6, 
and AURKB, have been previously linked to glioma out-
comes, particularly in terms of chemoresistance [27–31]. 
Importantly, our risk model’s translational relevance 
extends beyond prognosis. The distinct immune micro-
environment observed in high-risk patients, marked by 
elevated infiltration of cytotoxic T cells, macrophages, 
and dendritic cells, suggests potential therapeutic vulner-
abilities. For instance, the heightened immune activity in 
high-risk patients may indicate a more immunosuppres-
sive microenvironment, as excessive infiltration of mac-
rophages and exhausted T cells could promote immune 
evasion [32, 33]. This raises the possibility that high-risk 
patients, as stratified by our model, might benefit from 

Fig. 10  Molecular dynamics simulation analysis of the MGMT-ENU complex. (A) RMSD plot over 100 ns, showing the stability of the protein, ligand, and 
complex. (B) Rg of the complex, indicating the compactness of the protein throughout the simulation period. (C) RMSF of protein residues. (D) Distance 
analysis between the docking site-ligand and protein-ligand
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immunotherapies targeting checkpoint inhibitors (e.g., 
PD-1/PD-L1 or CTLA-4 blockers) to counteract immune 
suppression. Conversely, the lower infiltration of NK 
CD56 bright cells and plasmacytoid dendritic cells in 
high-risk patients highlights potential deficits in innate 
anti-tumor immunity, which could be addressed through 
adoptive cell therapies or cytokine-based interventions to 
enhance NK cell activity [34].

To enhance clinical applicability, we propose that 
this risk model could be integrated into routine clini-
cal workflows by enabling clinicians to identify patients 
who may benefit from more aggressive treatment strate-
gies or closer monitoring based on their risk scores. For 
instance, high-risk patients with elevated stromal and 
immune scores might be prioritized for combination 
therapies that target both the tumor (e.g., temozolomide) 
and the immunosuppressive microenvironment (e.g., 
CSF-1R inhibitors to deplete tumor-associated macro-
phages). Additionally, the strong positive correlation 
between risk scores and immune cell infiltration suggests 
that our model could serve as a biomarker for predicting 
response to immunotherapy, guiding personalized treat-
ment regimens.

Furthermore, the nomogram constructed from ENU-
related risk scores provides an intuitive and clinically 
useful tool for predicting individualized patient out-
comes. The good calibration and significant net benefit 
demonstrated by the nomogram highlight its potential 
clinical utility in guiding therapeutic decisions and moni-
toring patient prognosis. By visualizing the cumulative 
effect of multiple prognostic factors, the nomogram can 
assist clinicians in making informed decisions regard-
ing treatment plans tailored to individual patient pro-
files. An example of its application could involve using 
the nomogram to guide discussions with patients about 
the expected outcomes of different treatment modali-
ties based on their specific risk profiles. In addition, 
our immuno-infiltration analysis revealed higher levels 
of stromal and immune cell infiltration in the high-risk 
group, indicating a distinct immune microenvironment 
in these patients. This finding suggests that ENU expo-
sure may not only induce genetic alterations but also sig-
nificantly influence the immune landscape of gliomas. 
Specifically, the increased immune cell infiltration (T 
cells and macrophages) observed in the high-risk group 
may contribute to an inflammatory tumor microenvi-
ronment that promotes tumor aggressiveness and could 
affect treatment responses [32, 33, 35]. The molecu-
lar and immune heterogeneity captured by our model 
underscores the need for tailored therapeutic strategies. 
For example, high-risk patients with overexpression of 
AURKB (a mitotic kinase linked to therapy resistance) 
might benefit from targeted inhibitors like barasertib, 
while those with elevated cytotoxic cell infiltration could 

be candidates for vaccines or oncolytic viruses to amplify 
anti-tumor immunity.

Further studies are warranted to explore the func-
tional implications of this immune infiltration, particu-
larly how it interacts with the tumor cells and influences 
glioblastoma progression and therapeutic outcomes. 
This observation is supported by previous studies show-
ing that immune cell infiltration is associated with tumor 
aggressiveness and poor prognosis in gliomas [36–38]. 
However, it is important to note that our study does not 
address the temporal dynamics of ENU-induced glioma-
genesis, such as the progression from early-stage muta-
tions to tumor development. The TCGA glioma dataset 
utilized in our analysis lacks information on the timeline 
of these processes, which limits our ability to provide a 
longitudinal perspective on ENU’s role in glioma biology. 
Future research incorporating longitudinal studies would 
be beneficial to track the progression of ENU-induced 
mutations and their impact on tumor development over 
time.

One of the most novel aspects of our study is the 
molecular docking analysis, which demonstrated strong 
binding affinities of ENU with key risk genes such as 
MGMT and CA12. MGMT, a DNA repair enzyme, has 
been extensively studied in the context of glioma, where 
its methylation status is a known predictor of response 
to alkylating agents [39, 40]. Our docking results suggest 
that ENU may interact directly with MGMT, potentially 
interfering with its DNA repair function and contribut-
ing to glioma pathogenesis. Similarly, CA12, a carbonic 
anhydrase implicated in tumor growth, showed strong 
binding affinity with ENU, highlighting its potential 
role in ENU-induced gliomagenesis [41]. These findings 
provide a mechanistic basis for ENU’s toxicity and may 
inform future studies aimed at targeting these interac-
tions for therapeutic purposes.

In conclusion, our integrative analysis reveals key 
molecular mechanisms and pathways involved in ENU-
induced glioma. The identification of 71 ENU-related 
genes, the development of a robust prognostic model, 
and the exploration of ENU’s binding affinities with criti-
cal genes provide valuable insights into glioma patho-
genesis and potential therapeutic targets. Future studies 
should focus on validating these findings in experimental 
models and clinical settings to explore their translational 
potential in glioma diagnosis and treatment.
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